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Abstract:. Macroeyclic dioxadilactam 2 was obtained in two steps from R-(-)-phenylglycinol v/a the ehiral 
amido-ketal 1. Cyclization of I in acidic conditions (PTSA) and concentrated solution (e = 0.15 M) afforded 
2 as three diastexomers 2a+2b+2c, two of which show a C-2 symmetry. 
© 1997 Published by Elsevier Science Ltd. 

Natural macrocyclic molecules are well known for their biological importanc as antibiotics, hormones and 
as ions carriers. 1-3 Their activities, in relation with their binding abilities, are believed to be largely determined 
by their three dimensional arrangement in space.l, 2 Among these macrocyclic structures, polyether-lactams.2,4, 5 

which are synthetic intermediates of azacrowns 6 exhibit specific properties 7 and can act as hosts for biological 
molecules, 8 or be strongly donating N-ligands for transition metal complexes 9 or neutral ionophores for alkaline 

earth ions. 3,10 

In most cases, the elaboration of the lactam ring involves the reaction of activated diaeids with diamines. 2, 
5a,tb,l I In a more specific case, macrocyclic diazadilactams can be obtained by dimerization of azapenams. 12 

For our part, we envisaged building a macrocycle from substrates already containing the amide function and a 

transacetalation seemed to be an attractive process. 
Herein we report the rapid synthesis of a new 14-membered ring: the dioxadilactam 2. Our scheme is 

based on the acid catalyzed cyclization of a chirat hydroxy-amido ketal 1. The latter was obtained in 69% yield 

by condensation of 3,3-dimethoxy methylpropionate on a chiral amino-alcohol i.e. R-(-)-phenylglyeinol, in the 
presence of catalytic amount of potassium cyanide (MeOH, 60°C, 5 days). 13 Compound 1 exhibits three 

reactive centers: ketal, amide and primary alcohol functions, and its cyclization to a 4, 7 or 14 membered rings 

might be expected. 

Ph,,.. Moo O N H PTSA / CH.zCI= r-,"-o, o= o.e 
CN" / IdeOH c = 0.151d 

NH2 
OMe 
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The cyclization of I was studied in various acidic conditions. The most significant experimental results 

are reported in Table. In the presence of TIC14 or SnCI4 (exp 1 and 2), the reaction partially gave rise to an 

elimination derivative 3 and essentially tended towards polymer formation. With BFa.OEt2, two products were 

generated; the difluoroboroenolate 414 was obtained in 72% yield at high dilution (exp 3) while a more 
concentrated solution afforded dilactam 2 in appreciable yield (exp 4). Using camphorsulfonic acid (CSA), the 

reaction led to unsaturated ether 3 and dilactam 2; however the reaction was incomplete at 40°C (exp 5) while at 

higher temperature the yield of polymers increased (exp 6). The best result in dilactam formation (51% yield) 

was obtained with p-toluenesulfonic acid (PTSA) at 40°C under relatively concentrated solution (exp g). The 

choice of the concentration was essential in the course of the reaction and the range allowing the formation of the 

14-membered ring was quite small since the formation of dimer 2 resulted in both inter- and intramolecular 
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processes. Higher concentrations indeed led to further polymerisation. 

T a b l e  , 1 
Exp Acid Solvent Concent. T (t) 1 

mime eq °(3 (h) % 
I [ [ I I I 

1 TiCI4 1.1 CH2C12 2.0 x 10" 1 0O (0.5) 4 
2 SnCI4 1.1 CH2C12 1.0 x 10" 1 -10° ~ +10O (0.5) 
3 BF3.OEt 1.25 CH2CI 2 5.0 x 10 -3 0O (2) ~ 20o (2) 5 
4 BF3.OEt 1.5 CH2CI 2 1.25 xl0 "1 0O (3) --~ 20o (2) 19 
5 CSA 0.4 CH2CI 2 + 4A m.s. 5.0 x 10 -2 40 ° (16) 50 
6 CSA 0.15 Benzene + 4A m.s. 1.8 x 10 -2 80 ° (15) 7 
7 PTSA 0.1 CH2C12 + 4A m.s. 5.0 x I0 "2 40 ° (4) 6 
8 PTSA 0.1 CH2CI 2 + 4A m.s. 1.5 x 10 "1 40 ° (10) 8 

2 3 4 
% % % 

4 10 
11 

7 72 
28 24 
25 10 
21 5 
20 15 
51 4 

Ph 

. o o o 
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For exp. 8 (Table 1) the dilactam 2 was formed as three diastcreomcrs 2a+2b+2c 15 in a 37/8/55 ratio 
respectively. Isomers 2a and 2b were obtained as an inseparable mixture 2a+2b (83/17). In contrast, the major 
isomer 2c could be isolated pure. The structure and relative stereochemistry of each compound were inferred 
from NMR data (1H, 13C and 2D experiments). In 1H and 13C NMR spectra, isomer 2a exhibited doable 
signals for each pair of  identical groups of  the macrocycle e.g. the two OCH 3 signals appeared as two singlets at 

3.14 and 3.16 ppm by 1H NMR, and as two peaks at 52.4 and 53.8 ppm by 13C NMR. In conwast isomers 2b 

and 2c showed one signal for each pair of identical groups e.g. the two OCH3 signals appeared as one singlet at 
3.25 ppm in 2b and at 3.15 ppm in 2c by IH NMR, and as one peak at 54.5 ppm in 2b and at 53.2 ppm in 2e 
by 13C NMR. These data revealed an asymmetry of  the two chains in compound 2a and a total symmetry in 
compounds 2b and 2c. Moreover,- an X-Ray diffraction analysis performed on 2c 16 (Figure) allowed 

determination of absolute configuiations 7S and 7'S and confirmed the C-2 symmetry of  the macrocycle. 
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Consequently the following configurations could be inferred to the three isomers: 2a (3R, 3'R, 7R, 7'S), 
2b (3R, 3'R, 7R, 7'R), 2c (3R, 3'R, 7S, 7'S). 

OMe 0 

"" 3 ( ' ~ ' 0 ~  N H 

0 OMe 

OMe n 

0 OMe 

OMe 0 

H N . . . ~ i  O..v.."J, ph 

0 OMe 

2a 2b 2c 

As shown in Figure, the two amide nitrogens of the major compound 2c point in the same direction, 
perpendicular to the macrocycle. The measured torsion angles confirmed the sp 2 character of the nitrogens, 
while the measured distances betweeen identical atoms of the dimeric macrocycle e.g. d(N4-N4') = 4.14 A, 
d(O1-Ol') = 4.096 A gave the precise dimensions of the cage. Moreover in the crystal, the molecules are stacked 
along the binary axis and are linked by two hydrogen bonds NH--O [2.949(4) AI. 
In conclusion, the reported synthesis constitues a new and rapid access (2 steps) to novel macrocyclic 
dioxadilactams substituted by two possible binding methoxy groups. 17 Generalization of this macrocyclization 
reaction to a large variety of non-racemic [~-amino alcohols and study of their complexation with metal ions are 
under investigation. 
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